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Summary

Topographic Maps Within Entorhinal-Dentate SystemPhysiological Input via Grid Cells4
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Validation: Emergence of Place Fields

Input firing rates were generated using the grid maps
and the location of a virtual rat as it explored a square
environment.

Large-Scale, Biologically Realistic, Neuronal Network Model of the Hippocampus1

Multi-Compartmental Models of Neurons Deterministic Synaptic Dynamics Towards Full-Scale System
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66,000 MEC Cells
46,000 LEC Cells

120,000 Granule Cells
5,600 Basket Cells
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Input spikes were generated using an inhomogeneous
Poisson process.
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Multi-Resolution Input
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A multi-scale, biologically-realistic neuronal network model of the hippocampus
is being developed.

Physiological input from grid cells as added to the model.

The model further quantified and integrated two separate studies that revealed
that the grid cell receptive field properties and the entorhinal-dentate projection
vary along a similar anatomical axis.

The neuronal network model, with parameters constrained entirely based on
experimental data, generated place fields with properties that matched 
experimental reports and demonstrates a top-down validation strategy that 
relies on high-level phenomena.

The model then provided several testable hypotheses and insights:

There is a dorso-ventral organization to place field size in dentate gyrus.

The entorhinal-dentate topography is necessary to establish this organization.

The axon terminal field extent mediates a trade-off between a multi-resolution representation of 
space and spatial information with both properties optimized at 1.1 mm, which is within the 
experimentally reported axon terminal field extent of entorhinal cortical axons.

Prediction: Role of Topography on Spatial Encoding

Non-spatial,
random input

Spatially-correlated
input


